Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386701

RESUMO

Fatty acid unsaturation levels affect chloroplast function and plant acclimation to environmental cues. However, the regulatory mechanism(s) controlling fatty acid unsaturation in thylakoid lipids is poorly understood. Here, we have investigated the connection between chloroplast redox homeostasis and lipid metabolism by focusing on 2-Cys peroxiredoxins (Prxs), which play a central role balancing the redox state within the organelle. The chloroplast redox network relies on NADPH-dependent thioredoxin reductase C (NTRC), which controls the redox balance of 2-Cys Prxs to maintain the reductive activity of redox-regulated enzymes. Our results show that Arabidopsis (Arabidopsis thaliana) mutants deficient in 2-Cys Prxs contain decreased levels of trienoic fatty acids, mainly in chloroplast lipids, indicating that these enzymes contribute to thylakoid membrane lipids unsaturation. This function of 2-Cys Prxs is independent of NTRC, the main reductant of these enzymes, hence 2-Cys Prxs operates beyond the classic chloroplast regulatory redox system. Moreover, the effect of 2-Cys Prxs on lipid metabolism is primarily exerted through the prokaryotic pathway of glycerolipid biosynthesis and Fatty Acid Desaturase 8 (FAD8). While 2-Cys Prxs and FAD8 interact in leaf membranes as components of a large protein complex, the levels of FAD8 were markedly decreased when FAD8 is overexpressed in 2-Cys Prxs-deficient mutant backgrounds. These findings reveal a function for 2-Cys Prxs, possibly acting as a scaffold protein, affecting the unsaturation degree of chloroplast membranes.

2.
J Anal Methods Chem ; 2023: 5561071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936614

RESUMO

We propose a modification of terbium-sensitized luminescence (TSL) by means of the introduction of nanoparticles to improve the sensitivity and selectivity of the analytical methods. TSL detection is usually based on the complexation between fluorescent organic compounds (the analytes) and terbium. The organic compound is then excited, and, after an energy transfer towards terbium, the latter emits the luminescence signal. Here, the modification consists of the introduction of nanoparticles (carbon quantum dots, CQDs) into the system. The carboxylic groups of CQDs react with terbium, providing an interesting time-resolved luminescence probe. We applied this system for the determination of the neonicotinoid imidacloprid (IMID). When IMID was introduced in the terbium-CQDs system, the luminescent signal (λexc/λem of 256/545 nm) was quenched, proportionally to IMID concentration in the range of 100-2500 ng·mL-1, obtaining a limit of detection of 30 ng·mL-1. A method detection limit of 0.9 mg·kg-1 was reached in caneberries, thus complying with the maximum residue level of 5 mg·kg-1 established by Codex Alimentarius. We performed recovery experiments in caneberries (blackberries, blueberries, raspberries, and mulberries), obtaining recovery yields close to 100% in all cases. These results show that the use of terbium ions-nanoparticles luminescence probes can be useful for screening purposes in quality control laboratories.

3.
Redox Biol ; 62: 102645, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36898225

RESUMO

The redox couple formed by NADPH-dependent thioredoxin reductase C (NTRC) and 2-Cys peroxiredoxins (Prxs) allows fine-tuning chloroplast performance in response to light intensity changes. Accordingly, the Arabidopsis 2cpab mutant lacking 2-Cys Prxs shows growth inhibition and sensitivity to light stress. However, this mutant also shows defective post-germinative growth, suggesting a relevant role of plastid redox systems in seed development, which is so far unknown. To address this issue, we first analyzed the pattern of expression of NTRC and 2-Cys Prxs in developing seeds. Transgenic lines expressing GFP fusions of these proteins showed their expression in developing embryos, which was low at the globular stage and increased at heart and torpedo stages, coincident with embryo chloroplast differentiation, and confirmed the plastid localization of these enzymes. The 2cpab mutant produced white and abortive seeds, which contained lower and altered composition of fatty acids, thus showing the relevance of 2-Cys Prxs in embryogenesis. Most embryos of white and abortive seeds of the 2cpab mutant were arrested at heart and torpedo stages of embryogenesis suggesting an essential function of 2-Cys Prxs in embryo chloroplast differentiation. This phenotype was not recovered by a mutant version of 2-Cys Prx A replacing the peroxidatic Cys by Ser. Neither the lack nor the overexpression of NTRC had any effect on seed development indicating that the function of 2-Cys Prxs at these early stages of development is independent of NTRC, in clear contrast with the operation of these regulatory redox systems in leaves chloroplasts.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Tiorredoxinas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Oxirredução , Tiorredoxina Dissulfeto Redutase/metabolismo , Desenvolvimento Embrionário
4.
Bioimpacts ; 12(6): 515-531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36644541

RESUMO

Introduction: Paclitaxel (PTX) is a cornerstone in the treatment of breast cancer, the most common type of cancer in women. However, this drug has serious limitations, including lack of tissue-specificity, poor water solubility, and the development of drug resistance. The transport of PTX in a polymeric nanoformulation could overcome these limitations. Methods: In this study, PLGA-PTX nanoparticles (NPs) were assayed in breast cancer cell lines, breast cancer stem cells (CSCs) and multicellular tumor spheroids (MTSs) analyzing cell cycle, cell uptake (Nile Red-NR-) and α-tubulin expression. In addition, PLGA-PTX NPs were tested in vivo using C57BL/6 mice, including a biodistribution assay. Results: PTX-PLGA NPs induced a significant decrease in the PTX IC50 of cancer cell lines (1.31 and 3.03-fold reduction in MDA-MB-231 and E0771 cells, respectively) and CSCs. In addition, MTSs treated with PTX-PLGA exhibited a more disorganized surface and significantly higher cell death rates compared to free PTX (27.9% and 16.3% less in MTSs from MCF-7 and E0771, respectively). PTX-PLGA nanoformulation preserved PTX's mechanism of action and increased its cell internalization. Interestingly, PTX-PLGA NPs not only reduced the tumor volume of treated mice but also increased the antineoplastic drug accumulation in their lungs, liver, and spleen. In addition, mice treated with PTX-loaded NPs showed blood parameters similar to the control mice, in contrast with free PTX. Conclusion: These results suggest that our PTX-PLGA NPs could be a suitable strategy for breast cancer therapy, improving antitumor drug efficiency and reducing systemic toxicity without altering its mechanism of action.

5.
Plant Physiol ; 187(1): 88-102, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618130

RESUMO

In chloroplasts, thiol-dependent redox regulation is linked to light since the disulfide reductase activity of thioredoxins (Trxs) relies on photo-reduced ferredoxin (Fdx). Furthermore, chloroplasts harbor an NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC. The activity of these two redox systems is integrated by the redox balance of 2-Cys peroxiredoxin (Prx), which is controlled by NTRC. However, NTRC was proposed to participate in redox regulation of additional targets, prompting inquiry into whether the function of NTRC depends on its capacity to maintain the redox balance of 2-Cys Prxs or by direct redox interaction with chloroplast enzymes. To answer this, we studied the functional relationship of NTRC and 2-Cys Prxs by a comparative analysis of the triple Arabidopsis (Arabidopsis thaliana) mutant, ntrc-2cpab, which lacks NTRC and 2-Cys Prxs, and the double mutant 2cpab, which lacks 2-Cys Prxs. These mutants exhibit almost indistinguishable phenotypes: in growth rate, photosynthesis performance, and redox regulation of chloroplast enzymes in response to light and darkness. These results suggest that the most relevant function of NTRC is in controlling the redox balance of 2-Cys Prxs. A comparative transcriptomics analysis confirmed the phenotypic similarity of the two mutants and suggested that the NTRC-2-Cys Prxs system participates in cytosolic protein quality control. We propose that NTRC and 2-Cys Prxs constitute a redox relay, exclusive to photosynthetic organisms that fine-tunes the redox state of chloroplast enzymes in response to light and affects transduction pathways towards the cytosol.


Assuntos
Cloroplastos/metabolismo , Citoplasma/metabolismo , Luz , Arabidopsis , Proteínas de Arabidopsis , Cloroplastos/efeitos da radiação , Escuridão , Oxirredução/efeitos da radiação
6.
Biomed Pharmacother ; 133: 111059, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33378963

RESUMO

Paclitaxel (PTX), a drug widely used in lung cancer, has serious limitations including the development of peripheral neurotoxicity, which may lead to treatment discontinuation and therapy failure. The transport of PTX in large cationic liposomes could avoid this undesirable effect, improving the patient's prognosis. PTX was encapsulated in cationic liposomes with two different sizes, MLV (180-200 nm) and SUV (80-100 nm). In both cases, excellent biocompatibility and improved internalization and antitumor effect of PTX were observed in human and mice lung cancer cells in culture, multicellular spheroids and cancer stem cells (CSCs). In addition, both MLV and SUV with a polyethylene glycol (PEG) shell, induced a greater tumor volume reduction than PTX (56.4 % and 57.1 % vs. 36.7 %, respectively) in mice. Interestingly, MLV-PEG-PTX did not induce either mechanical or heat hypersensitivity whereas SUV-PEG-PTX produced a similar response to free PTX. Analysis of PTX distribution showed a very low concentration of the drug in the dorsal root ganglia (DRG) with MLV-PEG-PTX, but not with SUV-PEG-PTX or free PTX. These results support the hypothesis that PTX induces peripheral neuropathy by penetrating the endothelial fenestrations of the DRG (80-100 nm, measured in mice). In conclusion, our larger liposomes (MLV-PEG-PTX) not only showed biocompatibility, antitumor activity against CSCs, and in vitro and in vivo antitumor effect that improved PTX free activity, but also protected from PTX-induced painful peripheral neuropathy. These advantages could be used as a new strategy of lung cancer chemotherapy to increase the PTX activity and reduce its side effects.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Lipídeos/química , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/administração & dosagem , Polietilenoglicóis/química , Células A549 , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/toxicidade , Cátions , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Feminino , Gânglios Espinais/efeitos dos fármacos , Humanos , Lipossomos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/toxicidade , Tamanho da Partícula , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Carga Tumoral
7.
Pharmaceutics ; 12(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645938

RESUMO

The development of nanotechnology-based solutions for cancer at a preclinical level advances at an astounding pace. So far, clinical translation of these new developments has not been able to keep the pace due to a range of different reasons. One of them is the mismatch between in vitro and in vivo results coming from the expected difference in complexity. To overcome this problem, extensive characterisation using advanced in vitro models can lead to stronger preliminary data to face in vivo tests. Here, a comprehensive in vitro validation of a combinatorial therapy nanoformulation against solid tumours is presented. The information extracted from the different in vitro models highlights the importance of advanced 3D models to fully understand the potential of this type of complex drugs.

8.
Mikrochim Acta ; 186(12): 781, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729601

RESUMO

Two methods for the luminescence determination of cysteine (Cys) are presented. They make use of either silver nanoparticles (Ag NPs) or graphene quantum dots (GQDs), both doped with terbium(III). The methods are based on the finding that Cys quenches the green luminescence of Tb(III)-Ag NPs and Tb(III)-GQDs. The excitation/emission maxima are at 306/545 and 257/545 nm, for both nanoprobes, respectively. Response is linear in the 0.28-5.0 µg mL-1 Cys concentration range for the Tb(III)-Ag NP system, and from 0.05-3.0 µg mL-1 for the Tb(III)-GQD system. The respective limits of detection are 0.09 and 0.015 µg mL-1. The probes were applied to the time-resolved luminometric determination of Cys in (spiked) food supplements and gave satisfactory results. Graphical abstractSchematic representation of the quenching by cysteine (Cys) of the time-resolved luminescence (TSL) of terbium-graphene quantum dots [Tb(III)-GQD] and of terbium-silver nanoparticles [Tb(III)-Ag NP].

9.
Future Med Chem ; 11(18): 2459-2480, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31544490

RESUMO

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults, associated with a high mortality rate and a survival of between 12 and 15 months after diagnosis. Due to current treatment limitations involving surgery, radiotherapy and chemotherapy with temozolamide, there is a high rate of treatment failure and recurrence. To try to overcome these limitations nanotechnology has emerged as a novel alternative. Lipid, polymeric, silica and magnetic nanoparticles, among others, are being developed to improve GBM treatment and diagnosis. These nanoformulations have many advantages, including lower toxicity, biocompatibility and the ability to be directed toward the tumor. This article reviews the progress that have been made and the large variety of nanoparticles currently under study for GBM.


Assuntos
Neoplasias Encefálicas/terapia , Composição de Medicamentos , Glioblastoma/terapia , Nanopartículas/química , Animais , Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico , Humanos , Estrutura Molecular , Nanotecnologia
10.
Pharmacol Res ; 141: 451-465, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30634051

RESUMO

Paclitaxel (PTX), a chemotherapy agent widely used to treat lung cancer, is characterised by high toxicity, low bioavailability and the need to use of excipients with serious side effects that limit its use. Paclitaxel encapsulation into nanoparticles (NPs) generates drug pharmacokinetic and pharmacodynamic advantages compared to free PTX. In this context, a NP carrier formed from a copolymer of lactic acid and glycolic acid (PLGA) has demonstrated high biocompatibility and low toxicity and therefore being approved by FDA to be used in humans. We synthesised a new PLGA NP and loaded it with PTX to improve drug efficacy and reduce side effects. This nanoformulation showed biocompatibility and no toxicity to human immune system. These NPs favor the intracellular uptake of PTX and enhance its antitumor effect in human and murine lung cancer cells, with up to 3.6-fold reductions in the PTX's IC50. Although PLGA NPs did not show any inhibitory capacity against P-glycoprotein, they increased the antitumor activity of PTX in cancer stem cells. Treatment with PLGA-PTX NPs increased apoptosis and significantly reduced the volume of the tumorspheres derived from A549 and LL2 cells by up to 36% and 46.5%, respectively. Biodistribution studies with PLGA-PTX NPs revealed an increase in drug circulation time, as well as a greater accumulation in lung and brain tissues compared to free PTX. Low levels of PTX were detected in the dorsal root ganglion with PLGA-PTX NPs, which could exert a protective effect against peripheral neuropathy. In vivo treatment with PLGA-PTX NPs showed a greater decrease in tumor volume (44.6%) in immunocompetent mice compared to free PTX (24.4%) and without increasing the toxicity of the drug. These promising results suggest that developed nanosystem provide a potential strategy for improving the chemotherapeutic effect and reducing the side effects of PTX.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Portadores de Fármacos/química , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células A549 , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Distribuição Tecidual
11.
Artigo em Inglês | MEDLINE | ID: mdl-29447587

RESUMO

One of the most used agrochemicals in agricultural production, nitenpyram (NTP), has been determined by using a flow-through optosensing device based on Photochemically Induced Fluorescence detection. The combination of both methodologies allows, on one hand, a quick on-line photodegradation of NTP and, on the other hand, the preconcentration, quantification and desorption of the fluorescent photoproduct generated when retained on Sephadex QAE-A25 as solid support, which was monitored at 295 and 362 nm for excitation and emission, respectively. The proposed analytical method presents a detection limit of 500 pg mL-1 by using Multicommutated Flow Injection Analysis. Recovery experiments were carried out in different kinds of cruciferous vegetables at or below the MRL established in Japan, demonstrating that this method combines advantages of simplicity, high sensibility and high selectivity, fulfilling the requirements for its application in quality control. Results obtained in the analysis of real samples were in good agreement with those provided by a reference HPLC method.


Assuntos
Brassicaceae/química , Poluentes Ambientais/análise , Análise de Injeção de Fluxo , Contaminação de Alimentos/análise , Neonicotinoides/análise , Resíduos de Praguicidas/análise , Verduras/química , Fluorescência , Processos Fotoquímicos , Espectrometria de Fluorescência
12.
Eur. j. anat ; 21(2): 97-112, abr. 2017. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-163135

RESUMO

The gastrointestinal stromal tumour (GISTs), the most common mesenchymal neoplasm in the gastrointestinal tract, has been the subject of great interest in recent years in terms of prognosis, diagnosis and treatment. Its etiology is linked to the mutation of c-KIT and PDGFRA genes, although between 5 and 15% show no signs of such mutations. It is still diagnosed using immunohistochemical staining. The first line of treatment continues to be surgery, although advances in the molecular biology of GISTs are facilitating the development of new treatment strategies. Those that act by regulating tyrosine kinase activity are of particular interest. Drugs such as imatinib and sunitinib have improved the prognosis of these patients, although the development of resistance constitutes one of the main limitations of the treatment. The aim of this review is to present an up-to-date overview of the main etiopathogenic, diagnostic and therapeutic aspects of these tumours


No disponible


Assuntos
Humanos , Tumores do Estroma Gastrointestinal/patologia , Mesoderma/patologia , Neoplasias Gastrointestinais/patologia , Células Estromais/patologia , Nanotecnologia/métodos , Proteínas Proto-Oncogênicas c-kit/análise , Marcadores Genéticos
13.
FEMS Microbiol Lett ; 363(13)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27190143

RESUMO

Out of 8000 candidates from a genetic screening for Pseudomonas putida KT2442 mutants showing defects in biofilm formation, 40 independent mutants with diminished levels of biofilm were analyzed. Most of these mutants carried insertions in genes of the lap cluster, whose products are responsible for synthesis, export and degradation of the adhesin LapA. All mutants in this class were strongly defective in biofilm formation. Mutants in the flagellar regulatory genes fleQ and flhF showed similar defects to that of the lap mutants. On the contrary, transposon insertions in the flagellar structural genes fliP and flgG, that also impair flagellar motility, had a modest defect in biofilm formation. A mutation in gacS, encoding the sensor element of the GacS/GacA two-component system, also had a moderate effect on biofilm formation. Additional insertions targeted genes involved in cell envelope function: PP3222, encoding the permease element of an ABC-type transporter and tolB, encoding the periplasmic component of the Tol-OprL system required for outer membrane stability. Our results underscore the central role of LapA, suggest cross-regulation between motility and adhesion functions and provide insights on the role of cell envelope trafficking and maintenance for biofilm development in P. putida.


Assuntos
Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Mutação , Pseudomonas putida/genética , Membrana Celular/metabolismo , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Periplasma/metabolismo , Pseudomonas putida/isolamento & purificação , Pseudomonas putida/fisiologia
14.
Curr Drug Deliv ; 13(6): 830-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26634791

RESUMO

Colorectal cancer is the third most common type of cancer in both, men and women. The development of metastasis is very frequent, especially in patients with advanced stage, who require intensive chemotherapy that often results in poor response and significant morbidity. The undesirable effects of intensive chemotherapy on normal cells and the development of multidrug resistance are two of the main causes of treatment failure. Recent advances in nanotechnology allow to target cancer cells using cytotoxic drugs without affecting normal cells. Nanocarriers such as liposomes, polymeric nanoparticles and carbon nanotubes, among others, are able to improve drug distribution and bioavailability, cytotoxic concentration in the tumor mass and drug delivery to tumor tissue and, at the same time, reduce side effects. Current research studies are being conducted to develop new biomaterials that improve the characteristics of these nanomolecules. Several preclinical assays have disclosed the efficacy of nanotherapy in colon cancer, although further clinical trials will be necessary to demonstrate its efficacy. This review discusses the current status and the potential advantages of using nanocarrier-based drug delivery systems for colorectal cancer.


Assuntos
Antineoplásicos/administração & dosagem , Materiais Biocompatíveis/química , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos/química , Nanomedicina , Nanopartículas/química , Nanotubos de Carbono/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Materiais Biocompatíveis/administração & dosagem , Portadores de Fármacos/administração & dosagem , Humanos , Lipossomos , Nanopartículas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...